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Abstract
Aim: Data anonymization aims to enable data publishing without compromising the individuals’ privacy. The re-
identification and sensitive information inference risks of a dataset are important factors in the decision-making pro-
cess for the techniques and the parameters of the anonymization process. If correctly assessed, measuring the re-
identification and inference risks can help optimize the balance between protection and utility of the dataset, as too
aggressive anonymization can render the data useless, while publishing data with a high risk of de-anonymization is
troublesome.

Methods: In this paper, a new information theoretic-basedprivacymetric (ITPR) for assessing both the re-identification
risk and sensitive information inference risk of datasets is proposed. We compare the proposed metric with existing
information theoretic metrics and their ability to assess risk for various cases of dataset characteristics.

Results: We show that ITPR is the only metric that can effectively quantify both re-identification and sensitive infor-
mation inference risks. We provide several experiments to illustrate the effectiveness of ITPR.

Conclusion: Unlike existing information theoretic-based privacy metrics, the ITPR metric we propose in this paper
is, to the best of our knowledge, the first information theoretic-based privacy metric that allows correctly assessing
both re-identification and sensitive information inference risks.
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1 INTRODUCTION
Digital services today rely on the availability and processing of often sensitive data, while data analytics brings
about important benefits both for the service providers and the individuals. However, the protection of sensi-
tive data during this extensive processing has become a growing concern for Internet users, as the widespread
use of IoT services, mobile devices, and location services lead to constant monitoring and vast amounts of
sensitive data being gathered and stored.

There is a trade-off among data protection, data availability and data utility that needs to be tackled to achieve
services which ensure privacy protection and produce usable results at the same time. This need becomes
more imminent today, both due to the individuals’ sensitization to data protection matters, which can lead to
their lack of cooperation if they do not trust the service, and the data protection legislation being put in action,
which holds the data handler responsible for any data breaches [1].

Another important issue concerns privacy-preserving data publishing [2]. Anonymization techniques are being
used to sanitize datasets prior to data publishing, so that similar data processing results are produced, while
preserving data privacy. However, oftentimes the data characteristics are such that re-identification is eas-
ier than expected. De-anonymization techniques have advanced significantly and the abundance of external
auxiliary information concerning individuals can lead to the de-anonymization of seemingly safe datasets [3].

In this paper, we study and compare existing information theoretic-based privacy metrics to show that, in
several cases, they cannot correctly assess both re-identification risk and sensitive information inference risk.
We then propose, to the best of our knowledge, the first information theoretic-based privacy metric that can
correctly assess both re-identification and sensitive information inference risks.

Outline Thepaper is organized as follows. In Section 2, we describe the problem statement and themotivation
for this work. In Section 3, we present the background regarding anonymization risk metrics, as well as the
related work. The proposed information theoretic-based privacy risk metric (ITPR) is presented in Section
4. In Section 5, we describe the produced experimental results, as well as compared them to the related work.
The conclusions are presented in Section 6.

2 PROBLEM STATEMENT
Motivated by the desire to provide statistical information (sum, count, average, maximum, minimum, etc.)
without disclosing sensitive information about individuals, a lot of research has been conducted in the area
of statistical databases [4–8]. Fellegi and Sunter [7] proposed a Bayesian approach to estimate the advantage of
an adversary to disclose identities in continuous data. Unfortunately, metrics that use the adversary’s success
probability to estimate the identification risk are known to be useful with averaged population of individuals.
An individual may still suffer a high identification risk even when the adversary’s success probability is low.
In addition, the proposed metric is not useful for measuring the inference risk of sensitive attribute values.
In [9], Fellegi proposed an approach for checking residual disclosure. In contrast to our metric, the proposed
approach is not generic since it considers only disclosure caused by the publication of counts or aggregate query
results. Bethlehem et al. [5] presented a metric based on the Poisson–Gamma model for estimating the risk of
identification using sample data. Unfortunately, the proposed model is not useful when it comes to measuring
inference risk. One of the first research works that studied both the re-identification risk and the harm that
can be caused by re-identification was conducted by Lambert [8]. The metric proposed to measure the harm
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can be adapted to be used for measuring inference risk. In particular, the author introduced the definition of
true and false disclosure and shows that harm is difficult to measure because false re-identifications often lead
to false inferences which may have different harm. In [6], Duncan and Lambert used Bayesian decision theory
to propose a metric for assessing potential compromises on individual confidentiality due to the publication
of aggregated statistical query results. They proposed a method for disclosure limiting where the disclosure is
modeled as the difference between the prior and the posterior beliefs of the adversary about the data contents
before and after the release of statistical query results.

Most of the privacymetrics proposed in the area of statistical databases (e.g., [6,8,9]) address the problem ofmea-
suring the disclosure based on queried information. In addition, they are useful for measuring the disclosure
risk that results from the matching of the results of specific statistical queries with other available informa-
tion. They are often measured based on the information that the adversary can gather from these available
data sources about the individuals in the released data, which we believe to be very difficult to determine in
real-world situations. Instead, the privacy metric we propose in this paper, as well as the ones we consider
for comparison, aim to measure the disclosure risk of individual-specific data on which users can produce
summaries according to their own needs. In particular, the considered metrics make no assumption about the
entity.

Privacy-preserving data publishing [2,10] enables the utilization of the data collected by organizations and ser-
vice providers, without compromising the dataset participants’ privacy. The goal is to release microdata
from the dataset for processing, while protecting private information. To achieve that, the initial dataset is
anonymized. Metrics such as k-anonymity [11], l-diversity [12], and t-closeness [13] have been proposed to assess
the quality of the anonymization process, as well as the disclosure risk, setting thresholds for the anonymized
dataset characteristics to be considered safe.

In [14], Delanaux et al. proposed a declarative framework for privacy preserving linked data publishing inwhich
privacy and utility policies are specified as SPARQL queries. The proposed framework allows determining the
sequence of anonymization operations that should be used to satisfy the specified policy in the context of
linked data. In the same context, Grau et al. [15] proposed a framework for ensuring that anonymized RDF
graphs can be published on the Semantic Web with provable privacy guarantees.

It is common that the data publisher does not know in advance the entities that will access the released data
and the operations that will be performed on the released data. Therefore, the data publisher needs a method
to assess the characteristics of the dataset and the resulting disclosure risk, in order to make informed choices
on what to include in the released dataset.

Tailoring the anonymization techniques and parameter setting to the dataset characteristics is important, so
that the maximum possible data utility is preserved, while the data remain protected. If the anonymization
process affects the data more than needed, then data utility diminishes, while lighter anonymization can lead
to unintended data disclosure. Therefore, the challenge in the anonymization process is achieving a balance
between protection and utility [16].

While anonymized data utility measurement depends heavily on the type of analysis to be performed over the
data, the measurement of the privacy protection level depends mainly on two factors: (1) the re-identification
risk that measures the risk for any individual to be identified in the anonymized dataset; and (2) the inference
risk that measures the risk for any sensitive information in the dataset to be linked to a specific individual. The
level of privacy protection that can be ensured depends considerably on the distribution of the values of the
different attributes that compose the dataset to be anonymized. Thus, depending on the considered dataset,
we often end up with balancing the values of the re-identification and sensitive information inference risks to
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find an acceptable trade-off between data utility and data privacy. However, in the literature, these risks are
often measured using different metrics, e.g., 𝑘-anonymity [11] for re-identification risk and 𝑙-diversity [12] and
𝑡-closeness [13] for inference risk. The different risk measurement methods and in some cases behaviors of the
existing metrics often make combining the value of two risks to find the best balance between minimizing
re-identification and sensitive information inference risks hard.

In this paper, we aim to provide a new information theoretic-based privacy metric that is able to assess both
re-identification and sensitive information inference risks. We show that information theoretic-based risk
metrics proposed in the literature, are mainly average values. As a result, they do not assess effectively the
contribution of a single record to the risk value [17]. As individual risk values can fluctuate greatly (as we
illustrate in Section 3.2), average values are not suitable to represent both the re-identification and the sensitive
information inference risks.

3 BACKGROUND AND RELATED WORK
In this section, we present the relevant background regarding information theoretic anonymity metrics, as well
as related work on re-identification risk metrics. The typical setting of an anonymization process involves data,
contained in one or more tables. Each table row represents a data record and the columns of the table are the
record attributes. These attributes are categorized into three main categories:

• Identifiers directly identify an individual, such as name, social security number, etc.
• Quasi-identifiers (key attributes) can be used in combination to identify an individual, such as age, gender,
occupation, postal code, etc.

• Sensitive attributes contain sensitive information concerning an individual, such as health data, financial
data, etc.

To protect individuals from the disclosure of their sensitive data, anonymization techniques can be employed,
such as data generalization, suppression, and perturbation, aswell as noise addition techniques. De-anonymization
attacks on the released data can lead to both identity and attribute disclosure. In the case of identity disclosure,
an individual is directly linked to a dataset record and the sensitive information it contains. In the case of
attribute disclosure, the individual is associated with an attribute value but not a specific record.

Anonymity is defined as the state of being not identifiable within a set of subjects, called the anonymity set [18].
Statistical disclosure control (SDC) methods propose minimum requirements for each attribute in the dataset.
To conformwith k-anonymity [11], it is required that all quasi-identifier groups contain at least k records. As the
value of the quasi-identifier can be the same in the whole group, k-anonymity does not protect against homo-
geneity attacks [12]. For example, let us consider a 4-anonymity table composed of two attribute columns: Age
and Disease. If we assume that all individuals having the value “4*” for Age in the considered table are suffer-
ing from “HIV”, then, to perform an homogeneity attack, an adversary only needs to know that an individual
present in the table is between 40 and 49 years old to know his/her disease.

To address this issue, l-diversity [12] has been proposed, as it requires each group to contain at least l distinct
values for each quasi-identifier. Fulfilling l-diversity still fails to protect against skewness attacks [13], which
allow sensitive information disclosure when their distribution in the quasi-identifier group is significantly
different from the corresponding distribution over the entire dataset. To deal with this issue, t-closeness [13]
requires that the distance between the distributions of sensitive attributes in the quasi-identifier group and the
whole dataset remains under t. However, although these methods provide an objective way of assessing and
enforcing privacy in the datasets, they do not constitute a uniform risk-assessment metric.
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Table 1. First anonymized dataset (𝑘1 = 3, 𝑙1 = 3, and 𝑡1 = 0)

(a) Initial dataset

# Zip Code Age Disease
1 35510 21 Asthma
2 35591 42 HIV
3 35593 47 Asthma
4 35210 38 Diabetes
5 35273 32 HIV
6 35517 20 Diabetes
7 35599 49 Diabetes
8 35262 33 Asthma
9 35511 26 HIV

(b) Anonymized dataset

# Zip Code Age Disease

Group 1 3551* 2*
Asthma
Diabetes

HIV

Group 2 3559* 4*
HIV

Asthma
Diabetes

Group 3 352* 3*
Diabetes

HIV
Asthma

Table 2. Second anonymized dataset (𝑘2 = 5, 𝑙2 = 3, and 𝑡2 = 0)

(a) Initial dataset

# Zip Code Age Disease
1 35510 21 Asthma
2 35591 42 HIV
3 35593 47 Asthma
4 35210 38 Diabetes
5 35273 32 HIV
6 35517 20 Diabetes
7 35599 49 Diabetes
8 35262 33 Asthma
9 35511 26 HIV
10 35212 39 Diabetes
11 35281 32 Diabetes
12 35596 41 Diabetes
13 35592 46 Diabetes
14 35515 23 Diabetes
15 35511 26 Diabetes

(b) Anonymized dataset

# Zip Code Age Disease

Group 1 3551* 2*

Asthma
Diabetes
Diabetes
Diabetes

HIV

Group 2 3559* 4*

HIV
Asthma
Diabetes
Diabetes
Diabetes

Group 3 352* 3*

Diabetes
HIV

Asthma
Diabetes
Diabetes

3.1 The limitations of k­anonymity, l­diversity, and t­closeness models
As shown in the previous section, k-anonymity was proposed to mitigate identity disclosure, l-diversity was
proposed to mitigate homogeneity attacks, and t-closeness was proposed to prevent skewness attack. However,
when we analyze carefully the three models, we realize that they are not useful for computing the effective
inference risk (disclosure risk) of sensitive attributes information.

To illustrate, let us take the example of the two anonymized datasets in Tables 1 and 2. The anonymized dataset
in Table 1b satisfies 3-anonymity, 3-diversity, and 0-closeness while the anonymized dataset in Table 2b satisfies
5-anonymity, 3-diversity, and 0-closeness. Thus, if we limit our analysis to the computed three values for 𝑘-
anonymity, 𝑙-diversity, and 𝑡-closeness in these two cases, the overall level of ensured privacy is better in the
second dataset since 𝑘2 > 𝑘1 (i.e., the re-identification risk is lower in the second anonymized dataset than the
first one), 𝑙1 = 𝑙2, and 𝑡1 = 𝑡2. However, if we look carefully at the distribution of the values of the attribute
Disease in the two anonymized datasets, we realize that, if an adversary knows that an individual is in Group
1, 2, or 3, he has a bigger probability (0.60) of inferring the individual’s disease in the second anonymized
dataset than in the first one (0.33). This example proves that the combination of the 𝑘-anonymity, 𝑙-diversity,
and 𝑡-closeness models does not measure the effective disclosure risk but instead the accomplishment of the
anonymization process.

To evaluate the performance of an anonymization method and to be able to compare the effectiveness among
different methods, we need to define a common evaluation framework that can measure effectively both the
re-identification risk and the sensitive attributes inference risk.
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3.2 Information theoretic risk metrics
Information theory can be applied to the data protection context to evaluate the amount of information carried
by a dataset and the possibility that disclosing these data leads to identity or attribute leakage. Information
theoretic risk metrics provide the ability to be applied to different anonymity systems [19]. Information can be
represented as a variable that can contain different values, and an information theoretic risk metric aims at
measuring the amount of information leaked from a dataset.

Entropy is a key concept of information theory [20] that quantifies the uncertainty of a random variable. Un-
certainty enhances privacy, as it hinders an adversary from effectively estimating attribute values [21]. In the
following paragraphs, we provide definitions for the key concepts in entropy-based anonymity metrics.

We consider 𝑋 and 𝑌 to be two random variables, corresponding to two attributes in a dataset.

Similar to uncertainty, information theory can be used to produce metrics that quantify information loss or
gain for an adversary.

Entropy The entropy of a discrete random variable 𝑋 is:

𝐻 (𝑋) = −
∑
𝑥∈X

𝑝(𝑥) log 𝑝(𝑥) (1)

where 𝑝(𝑥) is the probability of occurrence for value 𝑥 ∈ 𝑋 .

Conditional Entropy The conditional entropy of a discrete random variable 𝑋 , given a discrete random variable
𝑌 , is:

𝐻 (𝑋 |𝑌 ) = −
∑
𝑦

𝑝(𝑦)
∑
𝑥

𝑝(𝑥 |𝑦) log 𝑝(𝑥 |𝑦)

= −
∑
𝑥,𝑦

𝑝(𝑥, 𝑦) log 𝑝(𝑥 |𝑦)
(2)

where 𝑝(𝑥 |𝑦) is the conditional probability of occurrence for value 𝑥 ∈ 𝑋 , given the occurrence of 𝑦 ∈ 𝑌 .
Conditional entropy expresses how much information is needed to describe 𝑋 , knowing the value of 𝑌 . The
maximum of conditional entropy 𝐻 (𝑋 |𝑌 ) is the entropy 𝐻 (𝑋) [21]. Therefore, normalized conditional entropy
is computed by the following fraction:

𝐻 (𝑋 |𝑌 )
𝐻 (𝑋) (3)

Joint Entropy The joint entropy of two discrete random variables 𝑋 and 𝑌 is:

𝐻 (𝑋,𝑌 ) = −
∑
𝑥∈X

𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦) (4)

where 𝑝(𝑥, 𝑦) is the joint probability of occurrence for the value pair (𝑥, 𝑦).

3.3 Related Work
In this section, we present the related work on information theoretic-based privacy risk metrics. After present-
ing the metrics and their characteristics, we present some example cases which show that these metrics are
unable to assess correctly the re-identification and inference risks of a dataset in certain cases.
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3.3.1 Discrimination Rate
Discrimination Rate (DR) is an attribute-centric privacy metric, which aims to measure the degree to which
attributes are able to refine an anonymity set and to measure their identification capability [22,23]. For this
purpose, attributes are represented as discrete random variables. Considering two discrete random variables
𝑋 and 𝑌 , DR is used to measure the identification capacity of attribute 𝑌 over the set of 𝑋 .

𝐷𝑅𝑋 (𝑌 ) = 1 − 𝐻 (𝑋 |𝑌 )
𝐻 (𝑋) (5)

DR is bounded on [0,1], where 1 means that an identifier reduces the anonymity set to a single individual.

3.3.2 Mutual Information
Mutual Information (MI) has been proposed as ametric for the disclosure risk and the utility of a dataset [24–28].
Themutual information of two discrete random variables 𝑋 and𝑌 represents the average amount of knowledge
about 𝑋 gained by knowing Y, or alternatively the amount of shared information between 𝑋 and 𝑌 . Therefore,
mutual information is an information gain metric. Intuitively, if 𝑋 and 𝑌 are independent, their mutual in-
formation is equal to zero. Mutual Information is computed as the difference between entropy 𝐻 (𝑋) and
conditional entropy 𝐻 (𝑋 |𝑌 ):

𝐼 (𝑋;𝑌 ) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑌 ) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑋)
= 𝐻 (𝑋) + 𝐻 (𝑌 ) + 𝐻 (𝑋,𝑌 )

(6)

3.3.3 Conditional Privacy
Conditional privacy (CP) is a privacy metric proposed in [29] for quantifying the fraction of privacy of a sen-
sitive attribute 𝑋 , which is lost by revealing another attribute 𝑌 . Conditional privacy can be seen as a mutual
information normalization and is formalized as follows:

𝑃𝑟𝑖𝑣𝐶𝑃 = 1 − 2−𝐼 (𝑋;𝑌 ) (7)

where 𝐼 (𝑋;𝑌 ) represents the mutual information of 𝑋 and 𝑌 .

3.3.4 Maximum Information Leakage
Maximum Information Leakage (MIL) is amodification ofmutual informationmetric to consider only a single
instance of a quasi-identifier attribute 𝑌 . It measures the maximum amount of information about a sensitive
attribute 𝑋 that can be learned by observing a single instance of 𝑌 [30].

𝑃𝑟𝑖𝑣𝑀𝐼𝐿 = max
𝑦∈𝑌

𝐼 (𝑋;𝑌 = 𝑦) (8)

where 𝐼 (𝑋;𝑌 ) represents the mutual information of 𝑋 and 𝑌 .

3.3.5 Entropy l-Diversity
Entropy l-Diversity (ELD) is proposed as an instantiation of the 𝑙-diversity principle [12]. It states that a table
is entropy 𝑙-diverse for a sensitive attribute 𝑋 if the following condition holds for all quasi-identifier groups 𝑞:

−
∑
𝑥∈𝑋

𝑝(𝑞, 𝑥) · 𝑙𝑜𝑔(𝑝(𝑞, 𝑥)) ≥ 𝑙𝑜𝑔(𝑙)

where 𝑝(𝑞, 𝑥) is the fraction of records in 𝑞 that have the value 𝑥 from the attribute 𝑋 . We note that ELD, as
proposed in [12], does not allowmeasuring the inference risk of a sensitive attribute, but it is used as an entropy-
based condition thatmust be satisfied to achieve the l-diversity property for a sensitive attribute. We adapt ELD
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Table 3. Example datasets

Identifier
Cases of Age Attribute Cases of Disease Attribute

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3
#1 30 30 30 30 30 Diabetes Diabetes Diabetes
#2 62 30 30 30 30 Epilepsy Diabetes Diabetes
#3 37 30 30 30 30 Asthma Epilepsy Diabetes
#4 21 30 47 47 30 Allergies Depression Diabetes
#5 19 30 30 30 47 Depression HIV Diabetes
#6 47 30 30 47 47 HIV Heart Disease HIV
#7 71 30 30 30 47 Heart Disease Cancer Asthma
#8 73 30 30 30 47 Cancer Allergies Allergies

Table 4. Information theoretic-based privacy metrics analysis results

Privacy Risk Type Considered Dataset
Results

DR MI CP MIL ELD

Re-identification risk

Identifier + Case 1 of Age 1.0 3.0 0,875 3.0 1.0
Identifier + Case 2 of Age 0.0 0.0 0.0 0.0 0.125
Identifier + Case 3 of Age 0.18 0.54 0.31 3.0 1.0
Identifier + Case 4 of Age 0.27 0.81 0.43 2.75 0.5
Identifier + Case 5 of Age 0.33 1.0 0.5 2.0 0.25

Inference risk

Identifier + Case 5 of Age +
0.33 1.0 0.5 2.0 0.25

Case 1 of Disease
Identifier + Case 5 of Age +

0.36 1.0 0.5 1.0 0.35
Case 2 of Disease

Identifier + Case 5 of Age +
0.35 0.54 0.31 1.0 1.0

Case 3 of Disease

to allow inference risk measurement as following: Given a sensitive attribute 𝑋 and the set of quasi-identifiers
groups Q, the inference risk of the attribute 𝑋 can be measured as:

𝑝𝐸𝐿𝐷 (𝑋) = 2min𝑞∈Q
∑

𝑥∈𝑋 𝑝(𝑞,𝑥)·𝑙𝑜𝑔(𝑝(𝑞,𝑥))

Examples - Problem cases
As mentioned above, information theoretic-based privacy metrics do not always succeed in assessing the dis-
closure risk, since they do not effectively assess the contribution of individual records to the risk value. We
present in Table 3 some examples of datasets, where the consideredmetrics fail to express one or both of the en-
hanced re-identification and inference risks of the data. As shown in Table 3, we consider a dataset composed
of eight records containing values of three attributes: Identifier, Age, and Disease. Five cases are considered
for the Age attribute:

• Case 1: All records contain unique attribute values.
• Case 2: All records contain the same attribute value.
• Case 3: Only one record contains a different attribute value.
• Case 4: Only two records contain a different attribute value.
• Case 5: Half of the records contain one and half of the records contain another attribute value.

For the Disease attribute, we consider the first three cases considered above for the attribute Age.

For Cases 1 and 3 of the attribute Age, we expect the highest value for the re-identification risk since some
values of the attribute Age uniquely identify an individual. For Case 2, we expect the lowest value for the re-
identification risk since the knowledge of the value of the attribute Age gives no additional information about
the considered identify. For Case 4, we expect a lower value for the re-identification risk than the one assigned
to Case 3 and a higher value than the one assigned to Case 5.

For the inference risk, we expect the risk assigned to Case 1 (Identifier + Case 5 of Age + Case 1 of Disease) to
be lower that the ones assigned to Cases 2 (Identifier + Case 5 of Age + Case 2 of Disease) and 3 (Identifier +
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Case 5 of Age + Case 3 of Disease). In addition, we expect the risk to be assigned to Case 2 to be lowest that
the one assigned to Case 3.

In Table 4, we examine the behavior of the information theoretic-based privacy metrics previously presented
in Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4, depending on the distribution of the values in the considered attributes
cases. According to the obtained results, DR, MI, and MIL correctly express the re-identification risk when
Cases 1 and 2 of the attribute Age are considered (Rows 2 and 3 of Table 4). However, all three metrics fail to
reflect the level of re-identification risk for Cases 3–5 of the attribute Age (Rows 4–6 of Table 4). Out of these
previously mentioned three cases, DR, MI, and MIL metrics output lower values to the case that represents
a higher re-identification risk (Case 3 of the attribute Age) and higher values to the case that represents a
lower re-identification risk (Case 5 of attribute Age). As for CPmetric, it correctly reflects the re-identification
risk of the dataset instance in which Case 2 of the attribute Age is considered and fails to correctly reflect the
re-identification risk for other cases. The HLD metric seems to correctly reflect both re-identification and
inference risks for all considered cases. However, we show in Section 5 that HLD fails to measure correctly the
inference risk caused by the difference between the distribution of the values of the sensitive attribute in the
whole table and their distribution in the different quasi-identifier groups.

When it comes to measuring the inference risk, all considered metrics successfully reflect the re-identification
risk of the dataset instance in which Case 5 of the attribute Age and Case 1 of the attribute Disease are consid-
ered (Row 6 of Table 4) and fail to correctly reflect the re-identification risk for other cases (Rows 7 and 8 of
Table 4).

4 THE NEW INFORMATION THEORETIC-BASED PRIVACY RISK METRIC
To address the lack of ability of existing information theoretic based privacy metrics to effectively assess the
contribution of individual records of a dataset to the re-identification risk value and correctly quantify the
inference risk that stems from the correlation between a quasi-identifier attribute (e.g., Age) and a sensitive
attribute (e.g., Disease), we propose a new information theoretic-based privacy risk metric (ITPR). The value
of ITPR can effectively express, on the one side, the probability of the attacker to refine the anonymity set and
re-identify a dataset participant, based on the knowledge of an (quasi-identifier) attribute and, on the other
side, the probability of an adversary to refine the anonymity set and link an identity to a value of a sensitive
attribute.

To develop the formula for the ITPR metric, we follow a similar logic as in the discrimination rate and mutual
information metrics, still relying on information theory and entropy calculations. However, instead of using
the average value of the attribute values’ entropy, we take the maximum value of entropy among attribute
values.

To compute the remaining identification information of attribute X, given attribute Y, we compute 𝐻 (𝑋) −
𝐻 (𝑋 |𝑌 ). We then divide by H(X) to normalize the computed value, resulting in the following representation:

max
𝑦∈Ω𝑌

({
1 − 𝐻 (𝑋 |𝑌 = 𝑦)

𝐻 (𝑋)

})
(9)

where Ω𝑌 is the sample space of the discrete random variable Y and 𝐻 (𝑋 |𝑌 = 𝑦) = 𝑝(𝑌 = 𝑦) × 𝐻 (𝑋 |𝑌 = 𝑦).

Using this equation, the results produced depend on the number of distinct values for Y; thus, for example, for
the case of two distinct values (|Ω𝑌 | = 2, e.g. Case 5 of attribute Age in Table 3), the produced results span
between 0.5 and 1.0, in the case of three distinct values (|Ω𝑌 | = 3), ITPR values span between 0.66 and 1.0, and
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so on. To counteract this behavior, we introduce the number of distinct values in attribute 𝑌 as a parameter in
the ITPR metric, leading to the following definition.

Definition 1. (Simple ITPR) Given two attributes 𝑋 and 𝑌 of a dataset, the simple ITPR of attribute 𝑌 relative
to attribute 𝑋 quantifies the capacity of attribute 𝑌 to refine the set of values of attribute 𝑋 and is measured as
follows:

𝐼𝑇𝑃𝑅𝑋 (𝑌 ) = max
𝑦∈Ω𝑌

({
1 − |Ω𝑌 | × 𝐻 (𝑋 |𝑌 = 𝑦)

𝐻 (𝑋)

})
(10)

where |Ω𝑌 | denotes the number of different values of 𝑌 .

Definition 1 can be generalized to define combined ITPR, which quantifies the ITPR measure related to the
combination of the values of several attributes to perform re-identification and/or inference attacks.

Definition 2. (Combined ITPR) Given a set of attributes 𝑋,𝑌1, 𝑌2, · · · , 𝑌𝑛 of a datasetD, let us denote T as the
set of ⟨𝑌1, 𝑌2, · · · , 𝑌𝑛⟩ distinct tuples in D. The combined ITPR of attributes 𝑌1, 𝑌2, · · · , 𝑌𝑛 relative to attribute
𝑋 quantifies the capacity of attributes 𝑌1, 𝑌2, · · · , 𝑌𝑛 to refine the set of values of attribute X and is computed
according to the following formula:

𝐼𝑇𝑃𝑅𝑋 (𝑌1, 𝑌2, · · · , 𝑌𝑛) =

max
⟨𝑦1,𝑦2,··· ,𝑦𝑛⟩∈T

({
1 − |T | × 𝐻 (𝑋 |𝑌1 = 𝑦1, 𝑌2 = 𝑦2, · · · , 𝑌𝑛 = 𝑦𝑛)

𝐻 (𝑋)

})
where

𝐻 (𝑋 |𝑌1 = 𝑦1, 𝑌2 = 𝑦2, · · · , 𝑌𝑛 = 𝑦𝑛) = 𝑝

(
𝑛⋂
𝑖=1

𝑌𝑖 = 𝑦𝑖

)
× 𝐻 (𝑋 |𝑌1 = 𝑦1, 𝑌2 = 𝑦2, · · · , 𝑌𝑛 = 𝑦𝑛)

Proposition 1. The output of both the simple and combined ITPR is bounded by 0 and 1.

Proof. We start by proving that the output of the simple ITPR (Definition 1) is bounded by 0 and 1. The proof
is by contradiction. Let us suppose that ∀𝑋,∀𝑌, 𝐼𝑇𝑃𝑅𝑋 (𝑌 ) < 0. We get

max
𝑦∈Ω𝑌

({
1 − |Ω𝑌 | × 𝐻 (𝑋 |𝑌 = 𝑦)

𝐻 (𝑋)

})
< 0

⇐⇒ ∀𝑦 ∈ Ω𝑌 : 1 − |Ω𝑌 | × 𝐻 (𝑋 |𝑌 = 𝑦)
𝐻 (𝑋) < 0

⇐⇒ ∀𝑦 ∈ Ω𝑌 : |Ω𝑌 | × 𝐻 (𝑋 |𝑌 = 𝑦) > 𝐻 (𝑋)
⇐⇒ ∀𝑦 ∈ Ω𝑌 : |Ω𝑌 | × 𝑝(𝑌 = 𝑦) × 𝐻 (𝑋 |𝑌 = 𝑦) > 𝐻 (𝑋)

⇐⇒ |Ω𝑌 | ×
∑
𝑦∈Ω𝑌

𝑝(𝑦) × 𝐻 (𝑋 |𝑌 = 𝑦) >
∑
𝑦∈Ω𝑌

𝐻 (𝑋)

⇐⇒ |Ω𝑌 | ×
∑
𝑦∈Ω𝑌

𝑝(𝑦) × 𝐻 (𝑋 |𝑌 = 𝑦) > 𝐻 (𝑋) × |Ω𝑌 |

⇐⇒
∑
𝑦∈Ω𝑌

𝑝(𝑦) × 𝐻 (𝑋 |𝑌 = 𝑦) > 𝐻 (𝑋)

⇐⇒ 𝐻 (𝑋 |𝑌 ) > 𝐻 (𝑋)

(11)

which cannot be true for any 𝑋 and 𝑌 . Therefore, for all 𝑋 and 𝑌 , 𝐼𝑇𝑃𝑅𝑋 (𝑌 ) ≥ 0.
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Table 5. ITPR results

# Privacy Risk Type Considered Dataset ITPR Results
1

Re-identification risk

Identifier + Case 1 of Age 1.0
2 Identifier + Case 2 of Age 0.0
3 Identifier + Case 3 of Age 1.0
4 Identifier + Case 4 of Age 0.83
5 Identifier + Case 5 of Age 0.33

6
Identifier + Case 2 of Age +

0.6
Case 1 of Zip Code (Table 6)

7
Identifier + Case 2 of Age +

0.75
Case 1 of Zip Code (Table 6)

8
Inference risk

Identifier + Case 5 of Age + Case 1 of Disease 0.33
9 Identifier + Case 5 of Age + Case 2 of Disease 0.45
10 Identifier + Case 5 of Age + Case 3 of Disease 1.0

Table 6. Cases of the attribute Zip Code

Case 1 Case 2
35000 35000
35000 35000
35000 35000
35510 35510
35510 35510
35510 35510
35510 35200
35510 35200

Now, let us suppose that ∀𝑋,∀𝑌, 𝐼𝑇𝑃𝑅𝑋 (𝑌 ) > 1. We get

max
𝑦∈Ω𝑌

({
1 − |Ω𝑌 | × 𝐻 (𝑋 |𝑌 = 𝑦)

𝐻 (𝑋)

})
> 1

⇐⇒ ∃𝑦 ∈ Ω𝑌 : 1 − |Ω𝑌 | × 𝐻 (𝑋 |𝑌 = 𝑦)
𝐻 (𝑋) > 1

⇐⇒ ∃𝑦 ∈ Ω𝑌 :
𝐻 (𝑋 |𝑌 = 𝑦)

𝐻 (𝑋) < 0

(12)

which cannot be true for all 𝑋 ,𝑌 , and 𝑦 ∈ 𝑌 . Therefore, for all 𝑋 and 𝑌 , 𝐼𝑇𝑃𝑅𝑋 (𝑌 ) ≤ 1. We can use the same
approach to prove that for all 𝑋 , 𝑌1, · · · , 𝑌𝑛, 0 ≤ 𝐼𝑇𝑃𝑅𝑋 (𝑌1, 𝑌2, · · · , 𝑌𝑛) ≤ 1.

As stated in Proposition 1, the returned results for ITPR are normalized between values 0 and 1 and effectively
represent, as we illustrate below: (1) the re-identification risk of an (identifier) attribute X, given a (quasi-
identifier) attribute Y; and (2) the inference risk caused by a sensitive attribute X when a (quasi-identifier)
attribute Y is published.

Table 5 illustrates the expressiveness of the ITPR metric, using the same examples as used in Table 4.

As shown in Table 5, compared to the existing information theoretic-based metrics we analyzed and reported
in Table 4, ITPR correctly quantifies the re-identification risk for all the considered cases (Rows 1–5 of Table
5). Rows 6 and 7 of Table 5 show that ITPR can effectively measure the re-identification risk when two (quasi-
identifier) attributes are combined. Moreover, the results show that the ITPR metric correctly measures the
inference risk represented by the attribute Disease (Rows 8–10 of Table 5).

The behavior of the ITPR privacy metric regarding the distribution of considered attribute values is more
thoroughly tested and illustrated in the next section.

http://dx.doi.org/10.20517/jsss.2020.20


Page 12 of 20 Surname et al. J Surveill Secur Saf 2021;2:83­102 I http://dx.doi.org/10.20517/jsss.2020.20

5 EXPERIMENTAL RESULTS
In this section, we provide the experimental results for the ITPR metric, compared to the discrimination rate,
mutual information, conditional privacy, maximum information leakage, and entropy l-diversity metrics. To
assess the behavior of the functions of these metrics, we first calculated the metric values for a dataset of 10,000
records, containing two distinct 𝑌 attribute values (for example, 𝑦1 = 𝑀𝑎𝑙𝑒 and 𝑦2 = 𝐹𝑒𝑚𝑎𝑙𝑒). We denote by
𝜖 the maximum difference between the number of occurrences of the values of the attribute 𝑌 :

𝜖 = max
𝑦1,𝑦2∈Ω𝑌

( |𝑜𝑐𝑐(𝑦1) − 𝑜𝑐𝑐(𝑦2) |) (13)

whereΩ𝑌 denotes the set of distinct values of𝑌 and 𝑜𝑐𝑐() is a function that returns the number of occurrences
of a value. Obviously, the bigger the value of 𝜖 is, the smaller the number of occurrences of 𝑦1 or 𝑦2 will be,
resulting in a high re-identification risk.

The results are illustrated in Figure 1. One can observe that the value of ITPR begins from 1 for the case of
𝜖 = 9998 (e.g., |𝑦1 | = 1, |𝑦2 | = 9999) and diminishes smoothly while the value 𝜖 decreases (i.e.,the sizes of the
two value groups (|𝑌1 |, |𝑌2 |) move closer to each other), converging to a very small value (7 ∗ 10−2) when the
value of 𝜖 = 0 (i.e, the two group sizes are equal |𝑌1 | = |𝑌2 | = 5000).

In the DR case, the metric stays below 0.1 for this dataset, failing to accurately express the re-identification
risk for the different cases. In the MI and CP cases, the metric output appears to increase as the number of
records of each attribute value move towards being equal, failing also to express that the re-identification risk
is higher when a smaller number of records contains one of the attribute values and the majority contains the
other. The ELD output increases extremely slowly as the value of 𝜖 increases. In Figure 1b, we observe that
the MIL metric output increases as the value of 𝜖 increases, which represents a correct behavior regarding the
re-identification risk represented in the different considered cases. Unfortunately, the MIL metric suffers from
two drawbacks: (1) the wide range of output values (e.g., between 7 and 13) makes the interpretation of the
output of the metric difficult; and (2) the MIL metric does not correctly express the inference risk represented
by a sensitive attribute, as illustrated in Figure 3b.

We note that, for all studied metrics, the same behaviors can be observed when several values are considered
for the attribute 𝑌 , as described in Figure 2. As the results indicate, ITPR is able to effectively express:

• the lower existence of risk when the attribute values are distributed equally among the dataset records;
• the gradual enhancement of risk, as the number of records containing a certain value decreases; and
• the higher risk value when a certain value appears only in a small number of records in the dataset.

Furthermore, we compared the ability of the considered metrics to assess the inference risk represented by the
publication of a sensitive attribute. For this, we consider two attributes Age and Disease in a dataset composed
of 10,000 records. For simplicity, we consider the Age to be composed of five different values uniformly dis-
tributed over the 10,000 dataset records and the attribute Disease to be composed of instances of 10 different
values. Since the inference risk depends mainly on the distribution of the different values of the considered
sensitive attribute, we analyze the output of the considered metrics regarding the difference between the most
used and the least used values of the attribute Disease that we denote 𝜆.

𝜆 = max
𝑥∈Ω𝐴,𝑦1,𝑦2∈Ω𝐷

( |𝑜𝑐𝑐(𝑦1 |𝐴𝑔𝑒 = 𝑥) − 𝑜𝑐𝑐(𝑦2 |𝐴𝑔𝑒 = 𝑥) |) (14)

whereΩ𝐴 andΩ𝐷 denote the set of distinct values of attributes Age andDisease, respectively, and 𝑜𝑐𝑐(𝑦 |𝐴𝑔𝑒 =
𝑥) denotes the number of occurrences of 𝑦 in the dataset when the value of 𝐴𝑔𝑒 = 𝑥. Note that the inference
risk is expected to increase as the value of 𝜆 increases since the higher is the value of 𝜆 the higher is the number
of occurrences of a specific value of a sensitive attribute in an anonymity class.
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Figure 1. Comparison of ITPR with DR, MI, CP, ELD, and MIL for re-identification risk quantification (two different values for Y).

Figure 3 illustrates the obtained results. Figure 3a shows that the outputs of ITPR, DR, MI, ELD, and CP in-
crease according to the growth of the value of 𝜆, which is compatible with the behavior we previously expected.
For the three metrics DR, MI, and CP, the particular output ranges make the interpretation of the risk difficult
since without knowing the output of the metric in the worst case it is hard to evaluate the severity of the output
value. The ITPR and ELD metrics do not suffer from this limitation since their output always ranges between
0 and 1. As for the MIL metric, Figure 3b shows that its value decreases according to the growth of the value
of 𝜆, failing to effectively assess the inference risk represented by the Disease attribute.

Li et al. [13] showed that the inference risk does not depend only on the distribution of the values of the con-
sidered sensitive attribute in the quasi-identifier groups. The variation between the global distribution of the
values of the sensitive attribute in the considered dataset and the local distribution of the values of the sensitive
attribute in the quasi-identifier groups can drastically impact the inference risk. To illustrate, let us consider a
dataset that has only one sensitive attribute, Disease, and is composed of 108 records. Furthermore, suppose
that each record in the dataset is associated with a different individual and that only 1000 records contain “HIV”
as a value for the attribute Disease. This means that anyone in the considered dataset has 10−3% possibility of
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Figure 2. Comparison of ITPR with DR, MI, CP, ELD, and MIL for re-identification risk quantification (10 different values for Y).

having “HIV”. Now, let us suppose that one of the quasi-identifiers groups created by the used anonymization
mechanism contains five records out of 100 that have “HIV” as a value for the attribute Disease. Clearly, this
presents a serious privacy risk, because anyone in the considered quasi-identifiers group would be considered
to have 5% possibility of having “HIV”, compared to the 10−3% of the overall population. Thus, a correct in-
ference risk measurement associated with a sensitive attribute 𝑋 should take into consideration the variation
𝜗𝑋 between the global distribution of the values of 𝑋 in the considered dataset and the local distribution of
the values 𝑋 in the quasi-identifier groups. In fact, the higher this variation is, the higher the inference risk
associated to the considered sensitive attribute must be. The variation 𝜗𝑋 is formalized as follows:

𝜗𝑋 = max
𝑞∈Q

(
𝐻 (𝑋) − 𝐻𝑞 (𝑋)

)
(15)

where Q denotes the set of quasi-identifier groups, 𝐻 (𝑋) denotes the entropy of 𝑋 in the hole dataset, and
𝐻𝑞 (𝑋) denotes the entropy of 𝑋 in the quasi-identifier group 𝑞.

We compare the ability of the considered metrics for assessing the inference risk represented by the sensitive
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Figure 3. Comparison of ITPR with DR, MI, MIL, and ELD for inference risk output regarding 𝜆.

attribute𝐷𝑖𝑠𝑒𝑎𝑠𝑒 regarding the variation 𝜗𝐷𝑖𝑠𝑒𝑎𝑠𝑒 between the global distribution of its values in the considered
dataset and the local distribution of its values in the quasi-identifier groups. Note that the inference risk of
a sensitive attribute 𝑋 is expected to increase according to raise of the variation 𝜗𝑋 . The obtained results are
illustrated in Figure 4. We can observe that the ELD metric does not take into consideration the variation
𝜗𝐷𝑖𝑠𝑒𝑎𝑠𝑒 since its output is constant in the function of 𝜗𝐷𝑖𝑠𝑒𝑎𝑠𝑒 . This experimentally proves that the ELDmetric
does not measure correctly the inference risk of the attribute Disease.

Moreover, we studied the behavior of the ITPR for different values of 𝜖 (0 − 1200) and 𝜗(0 − 0.9). In this
experiment, we considered a dataset with 10,000 records composed of 10 different values for the attribute Age
and 20 different values for the attribute Disease. The result is depicted in Figure 5.

It shows that the ITPR metric output increases smoothly while the value of 𝜖 or the value of 𝜗 increases which
represents the expected behavior of a correct inference risk assessment metric. As for the MIL, MI, and CP
metrics, their outputs increase extremely slowly as the value of 𝜗𝐷𝑖𝑠𝑒𝑎𝑠𝑒 increases. For example, if we suppose
that 𝜗𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 0 represents the case described above in which anyone in the database has 10−3% possibility
of having HIV, 𝜗𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 0.4 can represent the case in which anyone in a specific quasi-identifier group has
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Figure 4. Comparison of ITPR with DR, MI, MIL, and ELD for inference risk output regarding 𝜗.

Figure 5. Inference risk assessment using ITPR.

12% possibility of having HIV. However, when we examine the variations of the outputs of MIL, MI, and CP
between 𝜗𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 0 and 𝜗𝐷𝑖𝑠𝑒𝑎𝑠𝑒 = 0.4, they increase only from 0.07 to 0.09, from 0 to 0.02, and from 0 to 0.01,
respectively. Finally, this experiment shows that our proposed ITPR metric has the best behavior compared to
considered metrics regarding the increase of the variation 𝜗𝐷𝑖𝑠𝑒𝑎𝑠𝑒 .

Anonymization processes often deal with a large volume of data. As a result, the computation effectiveness of
such a metric should be evaluated. For this, we considered a table composed of three attributes: Identifier, Age,
and Disease. The attribute Age contains 120 different values while the attribute Disease contains 100 different
values. The evaluation was performed on a Spark cluster of four nodes with 100 workers with one core and 1
GB per worker. Figure 6 shows the time needed for the computation of the ITPRmetric regarding the number
of rows in the considered table.

Finally, we evaluated the computation effectiveness of the ITPR metrics regarding the number 𝑛 of the con-
sidered quasi-identifier attributes (Definition 2). For this, we considered a table composed of 107 records and
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Figure 6. ITPR computation time per number of records.
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Figure 7. ITPR computation time as function of the number of considered quasi-identifier attributes 𝑛.

130 attributes. The obtained results are reported in Figure 7. It shows that the time required for computing
ITPR increases linearly with the number of considered quasi-identifiers, which demonstrates ITPR scalability
when dealing with wide flattened tables.

The proposed ITPR metric can be used in both unprocessed and anonymized datasets. In the case of raw
datasets, ITPR can assist the data owners with making decisions on which attributes of the dataset are more
sensitive (i.e., the ones that have high inference risks) and which ones should be included in the anonymized
dataset and with what anonymization parameters.

As with all information theoretic risk metrics, defining the threshold values on what constitutes low, moderate,
or high risk, remains an issue. The selection of such thresholds always depends on the characteristics of the
dataset and the objectives of the data owner; however, in the case of ITPR, selecting thresholds for the risk
values appears to be more straightforward, as the ITPR value increases gradually as the number of records
containing a certain value decreases.
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Table 7. Benefits of the ITPR compared to existing metrics

Privacy Metrics Re-identification risk Inference Risk
Discrimination Rate (DR) 7 (3)
Mutual Information (MI) 7 (3)
Conditional Privacy (CP) 7 (3)

Maximum Information Leakage (MIL) (3) 7
Entropy L-Diversity (ELD) (3) 7

ITPR 3 3

(3): Correct assessment but hard interpretation of the risk. The maximum output of the
metric (i.e., the highest risk value) is not always the same, and it depends on the analyzed data.
This makes the interpretation of the risk level hard.

Another interesting use of ITPR can be the quality control and cleaning of datasets, as datasets which contain
errors in their records or contain a few outlier values will produce high values of re-identification risk, allowing
data owners to clean errors in their datasets or decide to suppress outlier values to facilitate the successful
dataset anonymization process.

6 CONCLUSIONS
In this paper, the ITPR information theoretic-based metric is proposed, for assessing both re-identification
and inference risks within datasets. This metric aims at effectively representing the contribution of individ-
ual records of a dataset to the re-identification and inference risks value. To achieve that, ITPR takes into
account the maximum value of entropy among the dataset attribute values. To facilitate the comparison of
risk values among different anonymization processes and between different datasets, the ITPR value is nor-
malized and bounded between 0 and 1. The experimental results show that ITPR succeeds in expressing both
re-identification and inference risks. The comparison with existing Information theoretic-based privacy met-
rics (Table 7) shows that ITPR is the only metric that can effectively assess both re-identification and inference
risk.
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